Proper gromov transforms of metrics are metrics

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proper gromov transforms of metrics are metrics

In phylogenetic analysis, a standard problem is to approximate a given metric by an additive metric. Here it is shown that, given a metric D defined on some finite set X and a non-expansive map f : X → R, the one-parameter family of the Gromov transforms D of D relative to f and ∆ that starts with D for large values of ∆ and ends with an additive metric for ∆ = 0 consists exclusively of metrics...

متن کامل

Gromov-Hausdorff Convergence of Discrete Transportation Metrics

This paper continues the investigation of ‘Wasserstein-like’ transportation distances for probability measures on discrete sets. We prove that the discrete transportation metrics on the d-dimensional discrete torus TN with mesh size 1 N converge, when N → ∞, to the standard 2-Wasserstein distance on the continuous torus in the sense of Gromov– Hausdorff. This is the first result of a passage to...

متن کامل

Gromov Hyperbolicity of Certain Conformal Invariant Metrics

The unit ball B is shown to be Gromov hyperbolic with respect to the Ferrand metric λBn and the modulus metric μBn , and dimension dependent upper bounds for the Gromov delta are obtained. In the two-dimensional case Gromov hyperbolicity is proved for all simply connected domains G. For λG also the case G = R n \ {0} is studied.

متن کامل

Proper actions and proper invariant metrics

We show that if a locally compact group G acts properly on a locally compact σ-compact space X, then there is a family of G-invariant proper continuous finite-valued pseudometrics which induces the topology of X. If X is, furthermore, metrizable, then G acts properly on X if and only if there exists a G-invariant proper compatible metric on X.

متن کامل

Gromov Hyperbolicity of Denjoy Domains with Hyperbolic and Quasihyperbolic Metrics

We obtain explicit and simple conditions which in many cases allow one decide, whether or not a Denjoy domain endowed with the Poincaré or quasihyperbolic metric is Gromov hyperbolic. The criteria are based on the Euclidean size of the complement. As a corollary, the main theorem allows to deduce the non-hyperbolicity of any periodic Denjoy domain.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 2002

ISSN: 0893-9659

DOI: 10.1016/s0893-9659(02)00075-7